NESTED BIPARTITE GRAPHS

BY FRANZ HERING*

ABSTRACT

We investigate a class of bipartite graphs, whose structure is determined by a binary number.

Introduction

We call a graph nested, when among every 4 points, spanning two disjoint edges, there is at least one additional edge. We investigate the class of nested bipartite graphs and for example calculate the number of nonisomorphic ones with m points. Then we study the complete bipartite graph, in which the edges are coloured with two colours, such that every colour defines a nested partial graph. The investigation is motivated by the relation of such graphs to the combinatorial structure of a certain class of convex polytopes [2]. It raises a combinatorial problem which we cannot solve: In a binary number with m digits count the number of 'alternating' subsequences with n digits, $n \leq m$. What is the maximal number of such subsequences?

1. The structure of nested bipartite graphs

Throughout this paper, a graph $\gamma = (M, \mathfrak{P})$ is always an undirected graph without loops and double edges, having the (not necessarily finite) set M as its pointset and \mathfrak{P} as its set of edges. Therefore we assume

$$\mathfrak{P} \subset \left\{ \{a,b\} \colon \, a,b \in M \,, \, \, a \neq b \right\}.$$

A bipartition $\{P,Q\}$ of M (i.e. $P \cup Q = M$, $P \cap Q = \emptyset$) is a bipartition of γ if

Received July 10, 1970

^{*}The work for this research was supported by the Max Kade Foundation.

$$\{\{a,b\}\in\mathfrak{P}\colon\,a,b\in P\}=\{\{a,b\}\in\mathfrak{P}\colon a,b\in Q\}=\varnothing.$$

Then γ is a bipartite graph. Furthermore

DEFINITION 1.1. $\gamma = (M, \mathfrak{P})$ is nested, when for every $\{a, b\}$, $\{c, d\} \in \mathfrak{P}$ at least one of the sets $\{a, c\}$, $\{a, d\}$, $\{b, c\}$, $\{b, d\}$ is in \mathfrak{P} , too.

Lemma 1.1. In a nested graph the nonisolated points form a component. Every two points of this component are joined by a chain of at most three edges.

PROOF. When a, b are nonisolated in $\gamma = (M, \mathfrak{P})$, we have $c, d \in M$ with $\{a, c\}, \{b, d\} \in \mathfrak{P}$. When $\{a, c\} \cap \{b, d\} \neq \emptyset$, then a, b are joint by a chain of length 2 or less. Otherwise the nested property gives us an additional edge among these points and so a chain of length 3 or less between a and b. \square

To $a \in M$ in $\gamma = (M, \mathfrak{P})$ we denote

$$\mathfrak{P}(a): = \{b \in M: \{a,b\} \in \mathfrak{P}\}.$$

LEMMA 1.2. Suppose $\gamma = (M, \mathfrak{P})$ is bipartite and $\{P, Q\}$ is a bipartition. Then γ is nested if and only if

(1.2)
$$\mathfrak{P}(a) \subset \mathfrak{P}(b) \text{ or } \mathfrak{P}(b) \subset \mathfrak{P}(a) \text{ for every } a, b \in P.$$

PROOF. When (1.2) is violated, we get $c \in \mathfrak{P}(a) \setminus \mathfrak{P}(b)$, $d \in \mathfrak{P}(b) \setminus \mathfrak{P}(a)$, i.e. $\{a,c\} \in \mathfrak{P}, \{b,c\} \notin \mathfrak{P}, \{b,d\} \in \mathfrak{P}, \{a,d\} \notin \mathfrak{P}$. Furthermore $\{a,b\}, \{c,d\} \notin \mathfrak{P}$, for $\{P,Q\}$ is a bipartition of γ . So γ is not nested.

Conversely, when γ is not nested, we find $\{a,c\}$, $\{b,d\} \in \mathfrak{P}$ with $\{a,b\}$, $\{a,d\}$, $\{b,c\}$, $\{c,d\} \notin \mathfrak{P}$. We may assume $a,b \in P$, so $c \in \mathfrak{P}(a) \setminus \mathfrak{P}(b)$, $d \in \mathfrak{P}(b) \setminus \mathfrak{P}(a)$, .e. (1.2) is violated. \square

PROPOSITION 1.1. Suppose M is a linear ordered set having the order relation < and $\{P,Q\}$ is a bipartition of M, furthermore

$$\mathfrak{P} : = \{\{a,b\}: a \in P, b \in Q, a < b\}.$$

Then $\gamma := (M, \mathfrak{P})$ is a nested bipartitite graph with the bipartition $\{P, Q\}$.

PROOF. $\{P,Q\}$ is a bipartition of γ according to (1.3). For the nested property take a, $c \in P$, b, $d \in Q$ with $\{a,b\}$, $\{c,d\} \in \mathfrak{P}$. So a < b, c < d. When $a \le c$, then a < d, so $\{a,d\} \in \mathfrak{P}$; when c < a, then c < b, so $\{b,c\} \in \mathfrak{P}$. \square

We want to show, that every nested bipartite graph $\gamma = (M, \mathfrak{P})$ may be obtained in this way. So we have to construct a suitable linear order relation on M.

DEFINITION 1.2. Suppose $\gamma=(M,\mathfrak{P})$ is bipartite, $\{P,Q\}$ is a bipartition and a, $b\in M$. Then a, b are equivalent iff a, $b\in P$ or $a,b\in Q$ and $\mathfrak{P}(a)=\mathfrak{P}(b)$. We write $a\sim b$, \bar{a} is the equivalence class of a. The equivalence classes are called blocks, more specific \bar{a} is a P-block if $a\in P$ and a Q-block otherwise. Furthermore

$$\bar{P}: = \{\bar{a}: a \in P\}, \ \bar{Q}: = \{\bar{b}: b \in Q\}, \ \bar{M}: = \bar{P} \cup \bar{Q}$$

$$\bar{\mathfrak{P}}: = \{\{\bar{a}, \bar{b}\}: \{a, b\} \in \mathfrak{P}\}, \ \bar{\gamma}: = (\bar{M}, \bar{\mathfrak{P}}).$$

Obviously $\bar{\gamma}$ is again a bipartite graph having the bipartition $\{\bar{P},\bar{Q}\}$ and $\bar{\bar{\gamma}}$ is isomorphic to $\bar{\gamma}$. The equivalence relation on M depends not only on γ , but also on the bipartition $\{P,Q\}$. However, this ambiguousity is only relevant for the isolated points, for when $\mathfrak{P}(a)\neq\varnothing$, then $\mathfrak{P}(a)=\mathfrak{P}(b)$ implies a, $b\in P$ or a, $b\in Q$.

Now we are prepared to define a linear order on M having the properties of Proposition 1.1:

DEFINITION 1.3. Suppose $\gamma = (M, \mathfrak{P})$ is nested, bipartite and $P \subset M$ such that $\{P, Q\}$ is a bipartition of γ . We define a P-relation < on M as follows:

i) On every block $\bar{a} \in \bar{M}$ the relation < is a linear order.

Now suppose $a, b \in M$ are not equivalent. Then a < b holds if and only if one of the following conditions is satisfied:

- ii) $a, b \in Q$, $\mathfrak{P}(a) \subset \mathfrak{P}(b)$
- iii) $a, b \in P$, $\mathfrak{P}(b) \subset \mathfrak{P}(a)$
- iv) $a \in Q$, $b \in P$, $\{a, b\} \notin \mathfrak{P}$
- v) $a \in P$, $b \in Q$, $\{a, b\} \in \mathfrak{P}$.

Lemma 1.3. A P-relation < develops canonically from M upon \overline{M} and defines a \overline{P} -relation < .

PROOF. For $\bar{a}, \bar{b} \in \bar{P}$, $\bar{a} = \bar{b}$, define $\bar{a} \neq \bar{b}$ iff there exists $a \in \bar{a}$, $b \in \bar{b}$ with a < b. Then a' < b' for every $a' \in \bar{a}$, $b' \in \bar{b}$. Therefore \neq has the properties $(i), \dots (v)$ of Definition 1.3. \square

A P-relation is not uniquely defined to a given P, for it is an arbitrary linear order within every equivalence class \bar{a} . However, this is obviously the only ambiguousity:

LEMMA 1.4. When $<_i$ (i = 1, 2) are P-relations, then $<_1 = <_2$.

Proof. Obvious from Definition 1.3.

LEMMA 1.5. When < is a P-relation, then the inverse relation > is a Q-relation.

PROOF. This is again an immediate consequence of Definition 1.3.

THEOREM 1.1. If $\gamma = (M, \mathfrak{P})$ is a nested bipartite graph, then every P-relation is a linear order on M and

$$\mathfrak{P} = \{ \{a, b\} : a \in P, b \in Q, a < b \}.$$

PROOF. (1.4) is obvious from (iv), (v) of Definition 1.3. So we only have to show that < is a linear order on M. We check first, that < is antisymmetric. Suppose $a, b \in P$ or $a, b \in Q$. On \tilde{a} our relation is a linear order by Definition 1.3, (i). We may therefore assume, that a, b are not equivalent. From (1.2) we obtain

$$\mathfrak{P}(a) \subset \mathfrak{P}(b) \text{ or } \mathfrak{P}(b) \subset \mathfrak{P}(a).$$

Therefore, when $a, b \in P$, the first relation gives us b < a, not a < b, the second leads to a < b, not b < a. When $a, b \in Q$, we get a < b not b < a from the first and b < a, not a < b from the second relation. When $a \in Q$, $b \in P$, then a < b, not b < a iff $\{a, b\} \notin \mathfrak{P}$ and b < a, not a < b otherwise.

Now we show, that < is transitive. Suppose a < b, b < c we have to check a < c in all the possible cases.

- 1) $a \sim b$. When $b \sim c$, too, then a < c follows from definition 3, (i). Now assume, that b, c are not equivalent. When b, $c \in Q$, then b < c gives us $\mathfrak{P}(b) \subset_{\neq} \mathfrak{P}(c)$, so from $a, b \in Q$ and $\mathfrak{P}(a) = \mathfrak{P}(b)$ we have $\mathfrak{P}(a) \subset_{\neq} \mathfrak{P}(b)$, a < c. When $b, c \in P$, then $\mathfrak{P}(c) \subset_{\neq} \mathfrak{P}(b)$ so again a < c.
- 2) $a,b \in Q$ not equivalent. So we have $\mathfrak{P}(a) \subset_{\neq} \mathfrak{P}(b)$. Therefore when $c \in Q$, then b < c gives us $\mathfrak{P}(b) \subset \mathfrak{P}(c)$, so $\mathfrak{P}(a) \subset_{\neq} \mathfrak{P}(b)$, therefore a < c. When $c \in P$ then b < c gives us $\{b, c\} \notin \mathfrak{P}$ according to Definition 1.3, (iv). From $\mathfrak{P}(a) \subset \mathfrak{P}(b)$ we have $\{a, c\} \notin \mathfrak{P}$, so a < c.
- 3) $a, b \in P$, not equivalent. So $\mathfrak{P}(b) \subset_{\neq} \mathfrak{P}(a)$. Again $c \in P$ gives us $\mathfrak{P}(c) \subset \mathfrak{P}(b)$, so a < c. When $c \in Q$, then b < c is equivalent to $\{b, c\} \in \mathfrak{P}$, so $\mathfrak{P}(b) \subset \mathfrak{P}(a)$ gives us $\{a, c\} \in \mathfrak{P}$ and therefore again a < c.
 - 4) $a \in Q$, $b \in P$. Here $\{a, b\} \notin \mathfrak{P}$. When $c \in P$, then $\mathfrak{P}(c) \subset \mathfrak{P}(b)$ and a < c

follows from $a \in Q$, $c \in P$, $\{a, c\} \notin \mathfrak{P}$. When $c \in Q$, then $\{b, c\} \in \mathfrak{P}$, so $b \notin \mathfrak{P}(a)$, $b \in \mathfrak{P}(c)$ implies $\mathfrak{P}(a) \subset_{\neq} \mathfrak{P}(b)$ according to (1.2), therefore a < c.

5) $a \in P$, $b \in Q$. So $\{a, b\} \in \mathfrak{P}$. Again for $c \in Q$ the relation b < c gives us $\mathfrak{P}(b) \subset \mathfrak{P}(c)$, so $\{a, c\} \in \mathfrak{P}$ and therefore a < c. When $c \in P$, then $\{b, c\} \notin \mathfrak{P}$, so $b \in \mathfrak{P}(a)$, $b \notin \mathfrak{P}(c)$, i.e. $\mathfrak{P}(c) \subset \mathfrak{P}(a)$ and a < c. \square

We use this theorem for obtaining a representation of every finite nested bipartite graph by a binary number:

DEFINITION 1.4. Suppose $d=(d_1,\cdots,d_m)$ is a binary number, define $M:=\{1,2,\cdots m\}$

(1.5)
$$\begin{cases} P \colon = \{i \in M \colon d_i = 0\} \\ Q \colon = \{j \in M \colon d_j = 1\} \end{cases}$$
(1.6)
$$\mathfrak{P} \colon = \{\{i, j\} \colon d_i = 0, d_i = 1, i < j\}.$$

Then $\gamma(d)$: = (M, \mathfrak{P}) is the graph of d.

COROLLARY 1.1. The graph $\gamma(d)$ is nested, bipartite and to every finite nested bipartite graph γ there exists a binary number d such that γ and $\gamma(d)$ are isomorphic.

PROOF. This is an immediate consequence of Proposition 1.1 and Theorem 1.1.

A point $a \in M$ is a universal point of γ , if $a \in P$ and $\mathfrak{P}(a) = Q$ or $a \in Q$ and $\mathfrak{P}(a) = P$.

COROLLARY 1.2. Suppose $\gamma = (M, \mathfrak{P})$ is nested and bipartite having the bipartition $\{P,Q\}$ and \langle is a P-relation.

- i) γ has an isolated point in Q if and only if \overline{M} has a minimal Q-block. (Minimal with respect to the \overline{P} -relation \overline{R} induced on \overline{M} by, the P-relation R according to Lemma 1.3).
 - ii) γ has an isolated point in P if and only if \overline{M} has a maximal P-block.
 - iii) γ has a universal point in Q if and only if \overline{M} has a maximal Q-block.
 - iv) γ has a universal point in P if and only if \bar{M} has a minimal P-block.
- v) γ is connected if and only if \overline{M} has no minimal Q-block and no maximal P-block.

PROOF. i): $b \in Q$ is isolated iff there exists no $a \in P$ with a < b, i.e. iff \bar{b} is minimal. The cases ii), iii), iv) follows by an analogous argument.

(v) From (i), (ii) we obtain that the condition: \overline{M} has no minimal Q-block and no maximal P-block is equivalent to: M has no isolated points. Therefore (v) follows from Lemma 1.1. \square

When M is finite, the condition (i) of Corollary 1.2 may be replaced by: γ has an isolated point in Q if and only if M has a minimal element in Q with respect to the given P-relation < . The conditions (ii) -(v) may be changed analogously.

Corollary 1.3. For a binary number $d=(d_1,\cdots,d_m)$ the graph $\gamma(d)$ is connected if and only if $d_1=0$, $d_m=1$.

PROOF. Definition 1.4 and Corollary 1.2, (v). \Box

COROLLARY 1.4. The nested, bipartite graphs $\gamma_i = (M_i, \mathfrak{P}_i)$ are isomorphic if and only if there exist P_i -relations $<_i$ on M_i and an order-isomorphism ϕ from M_1 to M_2 with $\phi(P_1) = P_2$.

PROOF. Suppose first, that γ_1, γ_2 are isomorphic graphs and that ψ is a graph-isomorphism from γ_1 onto γ_2 . From Theorem 1.1 we get a P_1 -relation $<_1$ on M_1 satisfying (1.4). Then $\{\psi(P_1), \psi(M_1 \setminus P_1)\}$ is a bipartition of γ_2 and the definition: $a_2 <_2 b_2$ if and only if $\psi^{-1}(a_2) <_1 \psi^{-1}(b_2)$ for every a_2 , $b_2 \in M_2$ gives us a $\psi(P_1)$ -relation $<_2$ on M_2 which is isomorphic to $<_1$.

Conversely, when ϕ is an order isomorphism with $\phi(P_1) = P_2$, then (1.4) gives us $\phi(\mathfrak{P}_1) = \mathfrak{P}_2$. \square

DEFINITION 1.5. \mathbb{D}_m denotes the set of all binary numbers with m digits. We write 0':=1, 1':=0 and to $d=(d_1,\cdots,d_m)\in\mathbb{D}_m$ define $d':=(d'_1,\cdots,d'_m)$, $d^-:=(d_m,\cdots,d_1)$.

So d', $d^- \in \mathbb{D}_m$, too and $(d')^- = (d^-)'$.

COROLLARY 1.5. Suppose $d, d^* \in \mathbb{D}_m$ and $\gamma(d)$ is connected, (so when $d = (d_1, \dots, d_m)$, then $d_1 = 0$, $d_m = 1$ by Corollary 1.3). Then $\gamma(d)$, $\gamma(d^*)$ are isomorphic if and only if $d^* = d$ or $d^* = (d^-)'$.

PROOF. Assume first $d^* = d'^-$. Then (1.5) is a bipartition for both $\gamma(d)$ and $\gamma(d^*)$ and the mapping $\phi: \phi(i) = m - i$ $(i = 1, \dots m)$ has the properties of Corollary 1.4. Conversely, when $\gamma(d)$ is connected, then the bipartition $\{P,Q\}$ is uniquely defined either leading to d or d'^- . \square

2. The number of nested bipartite graphs with m points

THEOREM 2.1. Suppose p, q are positive integers, p+q=m and $\beta(p,q)$ is the cardinality of nonisomorphic nested, bipartite connected graphs having he bipartition $\{P,Q\}$ with #P=p, #Q=q.

Then

(2.1)
$$\beta(p,q) = \begin{cases} \binom{m-2}{p-1} & \text{when } p \neq q, \\ \frac{1}{2} \binom{m-2}{2} + 2^{\frac{1}{2}(m-4)}, & \text{when } p = q = m/2. \end{cases}$$

Proof. Corollary 1.5 gives us

$$\beta(p,q) = \#\{\{d,d'^-\}: d = (d_1,\cdots,d_m) \in \mathbb{D}_m, d_1 = 0, d_m = 1, \sum_{i=1}^m d_i = q\}.$$

When $p \neq q$, then

$$\beta(p,q) = \#\{d \in \mathbb{D}_m: d_1 = 0, d_m = 1, \Sigma d_i = q\} = \binom{m-2}{p-1}.$$

When $p = q = \frac{m}{2}$, then $\left(\frac{m-2}{2}\right)$ counts the sets $\{d, d'^-\}$ with $d \neq d'^-$ twice. Now for

$$d = (d_1, \cdots d_{m/2}, d_{m/2+1}, \cdots d_m)$$

we have $d = d'^-$ if and only if $d_{m/2-j+1} = d'_{m/2+j}$ for $j = 1, \dots m/2$. Therefore $\# \{ \{d, d'^-\} : d \in \mathbb{D}_m, \ d_1 = 0, \ d_m = 1, \ d = d'^- \}$

$$= \# \{ (d_1, \cdots d_{m/2}) \in \mathbb{D}_{m/2} \colon d_1 = 0 \} = 2^{(m-2)/2} .$$

This gives us

$$\beta\left(\frac{m}{2},\frac{m}{2}\right) = \frac{1}{2} \left[\left(\frac{m-2}{2}\right) - 2^{(m-2)/2} \right] + 2^{(m-2)/2} = \frac{1}{2} \left(\frac{m-2}{2}\right) + 2^{\frac{1}{2}(m-4)}. \quad \Box$$

Corollary 2.1. The cardinality $\beta(m)$ of nonisomorphic nested bipartite connected graphs with m points is

(2.2)
$$\beta(m) = \begin{cases} 2^{m-3} & \text{when } m \equiv 1(2), \\ 2^{m-3} + 2^{m/2-2}, & \text{when } m \equiv 0(2). \end{cases}$$

PROOF. $\beta(m) = \sum \{\beta(p,q): p+q=m, 1 \le p \le \left[\frac{1}{2}m\right]\}$. Therefore, when m = 1(2), Theorem 2.1 gives us

$$\beta(m) = \sum_{p=1}^{\frac{1}{2}(m-1)} {m-1 \choose p-1} = \frac{1}{2} \sum_{v=0}^{m-2} {m-2 \choose v} = 2^{m-3}.$$

When $m \equiv 0(2)$ we obtain

$$\beta(m) = \sum_{p=1}^{\frac{1}{2}(m-1)} {m-1 \choose p-1} + \frac{1}{2} \left(\frac{m-2}{2}\right) + 2^{m/2-2}$$

$$= \frac{1}{2} \sum_{v=0}^{m-2} {m-2 \choose v} - \frac{1}{2} \left(\frac{m-2}{2}\right) - \frac{1}{2} \left(\frac{m-2}{2}\right) + 2^{m/2-2}$$

$$= 2^{m-3} + 2^{(m-4)/2}. \quad \Box$$

3. Relations between nested bipartite graphs

DEFINITION 3.1. An edge $\{a,b\}$ of a nested bipartite graph $\gamma = (M,\mathfrak{P})$ is an endedge, if $(M,\mathfrak{P}\setminus\{\{a,b\}\})$ is nested and bipartite, too.

PROPOSITION 3.1. Suppose $\{a,b\}$ is an edge of the nested bipartite graph $\gamma = (M, \mathfrak{P}), \{P,Q\}$ is a bipartition of γ , $a \in P$, $b \in Q$ and < is a P-relation. Then $\{a,b\}$ is an endedge if and only if the following condition holds:

(*)
$$\{c,d\} \in \mathfrak{P}, c \in P, d \in Q \text{ and } \tilde{a} < \tilde{c} \text{ implies } \tilde{b} < \tilde{d} \text{ or } \tilde{b} = \tilde{d}.$$

PROOF. a) Suppose $\{a,b\}$ is not an endedge. Then we find $\{a_1,b_2\}$, $\{a_2,b_1\}\in \mathfrak{P}\setminus \{a,b\}$ with $a_1,a_2\in P$, $b_1,b_2\in Q$ and $\{a_1,b_1\}$, $\{a_2,b_2\}\notin \mathfrak{P}\setminus \{a,b\}$, for $(M,\mathfrak{P}\setminus \{\{a,b\}\})$ is not nested. γ is nested, therefore $\{a_1,b_1\}=\{a,b\}$ or $\{a_2,b_2\}=\{a,b\}$. We assume $\{a_2,b_2\}=\{a,b\}$, so $a_2=a$, $b_2=b$. We have $b_1< a_1$ for $\{a_1,b_1\}\notin \mathfrak{P}$, $a_1< b$, $a< b_1$ for $\{a_1,b\}$, $\{a,b_1\}\in \mathfrak{P}$ together $a< b_1< a_1$ and $b_1< a_1< b$, i.e. $\{a_1,b_1\}$ violates the condition (*).

b) Conversely, let us assume that $\{a,b\} \in \mathfrak{P}$ with $a \in P$, $b \in Q$ violates (*). Then we find $\{c,d\} \in \mathfrak{P}$, $c \in P$, $d \in Q$ with $\bar{a} < \bar{b}$ and $\bar{d} < \bar{c}$. From $\bar{a} < \bar{c}$ we obtain $u \in \mathfrak{P}(a) \setminus \mathfrak{P}(c)$ according to Definition 3, (iii). From $\bar{d} < \bar{b}$ and $(c,d) \in \mathfrak{P}$ we get $\{c,b\} \in \mathfrak{P}$. So in $(M,\mathfrak{P} \setminus \{\{a,b\}\})$ we have $\{a,u\}$, $\{c,b\} \in \mathfrak{P} \setminus \{\{a,b\}\}$, with $\{c,u\}$, $\{a,b\} \notin \mathfrak{P} \setminus \{\{a,b\}\}$, proving that this graph is not nested. \square

COROLLARY 3.1. When $\gamma = (M, \mathfrak{P})$ is nested, bipartite, $\mathfrak{P} \neq \emptyset$ and $\bar{\gamma}$ is finite, then γ has an endedge.

PROOF. When $\{a,b\}$ is not endedge, we find $\{c,d\} \in \mathfrak{P}$ with $\bar{c} < \bar{a}, \bar{d} < \bar{b}$. Continuing this argument leads to an endedge, for $\bar{\gamma}$ is finite. \Box

When M is the set of rational numbers in the open unit interval and P is a subset of M such that P and $M \setminus P$ are both dense in M, define

 \mathfrak{P} : = $\{\{a,b\}: a \in P, b \in M \setminus P, a < b\}$. Then $\gamma = (M,\mathfrak{P})$ is a nested bipartite graph without endedges.

Corollary 3.2. When $\gamma = (M, \mathfrak{P})$ is a finite nested bipartite graph then there exists a sequence

$$(3.1) \emptyset = \mathfrak{P}_0 \subset \mathfrak{P}_1 \subset \cdots \subset \mathfrak{P}_s = \mathfrak{P}$$

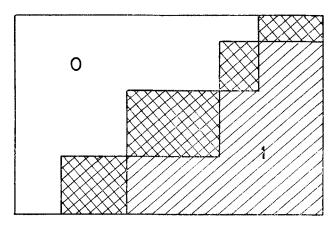
with $\#(\mathfrak{P}_i \setminus \mathfrak{P}_{i-1}) = 1$ for $i = 1, \dots s$ such that every $\gamma_i = (M, \mathfrak{P}_i)$ is nested and bipartite.

PROOF. Obvious from Corollary 3.1.

COROLLARY 3.3. When $d \in \mathbb{D}_m$, then $\{u,v\} \in \mathfrak{P}$, $v \in Q$, is an endedge of $\gamma(d)$ if and only if there exists a $w \in M = \{1, \dots m\}$ with $d_u = d_{u+1} = \dots = d_w = 0$, $d_{w+1} = \dots = d_v = 1$. In this case define $d^* = (d_1, \dots d_{w-1}, 1, 0, d_{w+2}, \dots d_m)$. Then $\gamma(d^*)$ is isomorphic to $\gamma^* = (M, \mathfrak{P} \setminus \{\{u,v\}\})$.

PROOF. Apply Definition 1.4 and Corollary 1.1.

When $\gamma = (M, \mathfrak{P})$ is a finite nested bipartite graph, then its endedges may be easily obtained from its adjacency matrix. They are cross-hatched in the following diagram:



(From Lemma 1.2 we obtain that to every nested bipartite graph there exists an adjacency matrix of the form of the diagram above).

DEFINITION 3.7. When $\gamma = (M, \mathfrak{P})$ has the bipartition $\{P, Q\}$ and

$$Q: = \{\{a,b\}: a \in P, b \in Q, \{a,b\} \in \mathfrak{P}\}\$$

then $\gamma^c = (M, \mathfrak{P})$ is the $\{P, Q\}$ -complement of γ .

LEMMA 3.1. When γ is nested, then γ^c is nested, too.

PROOF. Suppose $\{a,b\}$, $\{c,d\} \in \mathbb{Q}$, a, $c \in P, b$, $d \in Q$. Then $\{a,d\} \in \mathbb{P}$ and $\{c,b\} \in \mathbb{P}$ is impossible, for γ is nested. So $\{a,d\} \in \mathbb{Q}$ or $\{c,b\} \in \mathbb{Q}$. \square

The definition of γ^c depends not only on γ but also on the bipartition $\{P,Q\}$. This bipartition and therefore γ^c is uniquely determined if and only if γ is connected. According to Corollary 1.2 in this case γ^c is not connected and therefore has more than one complement.

The following two corollaries are an immediate consequence of Lemma 3.1:

COROLLARY 3.4. When γ is nested having the bipartition $\{P,Q\}$ and the $\{P,Q\}$ -complement γ^c , then every P-relation of γ is a Q-relation of γ^c . So

$$\mathfrak{Q} = \{ \{a, b\} : a \in P, b \in Q, b < a \}$$

COROLLARY 3.5. $\gamma(d)^c = \gamma(d')$ for every $d \in \mathbb{D}_m$.

Another consequence is the following extension of (3.1) in Corollary 3.2.

COROLLARY 3.6. When $\gamma = (M, \mathfrak{P})$ is finite nested and bipartite with the bipartition $\{P, Q\}$ and

(3.4)
$$\mathfrak{M} = \{\{a, b\}: a \in P, b \in Q\}$$

then there exists a sequence

$$(3.5) \qquad \varnothing = \mathfrak{P}_0 \subset \mathfrak{P}_1 \subset \cdots \subset \mathfrak{P}_s = \mathfrak{P} \subset \mathfrak{P}_{s+1} \subset \cdots \subset \mathfrak{P}_t = \mathfrak{M}$$

such that every $\gamma_i = (M, \mathfrak{P}_i)$ is nested, bipartite with the same bipartition $\{P, Q\}$ and $\#(\mathfrak{P}_i \setminus \mathfrak{P}_{i-1}) = 1$ for $i = 1, \dots t$.

PROOF. Apply Corollary 3.2 on γ and on γ^c . \square

4. Alternating chains in the nested bicoloured, complete bipartite graph

Let $\omega = (M, \mathfrak{M})$ denote the complete bipartite graph with the bipartition $\{P,Q\}$ so that \mathfrak{M} is given by (3.4) and with the bicolouring $\{\mathfrak{P},\mathfrak{Q}\}$ of \mathfrak{M} . (A bicoloring is simply a bipartition of \mathfrak{M}). A colour \mathfrak{P} (or \mathfrak{Q}) of ω is nested, if (M,\mathfrak{P}) (or (M,\mathfrak{Q})) is a nested graph. From Lemma 3.1 we learn that either \mathfrak{P} and \mathfrak{Q} are both nested or both not nested. Furthermore, when $d \in \mathbb{D}_m$, then $\omega(d)$ is the nested coloured bipartite complete graph of d having the bipartition (1.5) and the nested bicolourings

(4.1)
$$\begin{cases} \mathfrak{P}(d) : = \{\{i,j\}; d_i = 0, d_j = 1, i < j\} \\ \mathfrak{Q}(d) : = \{\{i,j\}: d_i = 1, d_j = 0, i < j\} \end{cases}$$

A chain $v = (N, \mathfrak{N})$ in ω is alternating, iff every 2 adjacent edges of v have different colours.

Lemma 4.1. When ω has an alternating cyclic chain, then ω has an alternating cyclic chain of length 4.

PROOF. When $v = (N, \mathfrak{N})$ is an alternating cyclic chain of minimal length 2t, we have an arrangement of \mathfrak{N} to a sequence

$$(\{a_1, b_1\}, \{b_1, a_2\}, \{a_2, b_2\}, \dots \{b_{t-1}, a_t\}, \{a_t, b_t\}, \{b_t, a_1\})$$

where $a_i \in P$, $b_i \in Q$ for $i = 1, \dots, t$ and $\{a_1, b_1\} \in \mathfrak{P}$. When t > 2, then $\{a_2, b_t\} \notin \mathfrak{N}$. When $\{a_2, b_t\} \in \mathfrak{Q}$, then $(\{a_2, b_2\}, \{b_2, a_3\}, \dots, \{b_{t-1}, a_t\}, \{a_t, b_t\}, \{b_t, a_2\}$ defines an alternating cyclic chain of length 2t - 2. When $\{a_2, b_t\} \in \mathfrak{P}$, then $(\{a_1, b_1\}, \{b_1, a_2\}, \{a_2, b_t\}, \{b_t, a_1\})$ defines an alternating cyclic chain of length 4. Both results contradict the definition of t. \square

PROPOSITION 4.1. The colouring $\{\mathfrak{P},\mathfrak{Q}\}$ of ω is nested if and only if ω has no alternating cyclic chain.

PROOF. The colouring is not nested if and only if we find $a_1, a_2 \in P$, $b_1, b_2 \in Q$ with $\{a_1, b_1\}$, $\{a_2, b_2\} \in \mathfrak{P}$, $\{a_1, b_2\}$, $\{a_2, b_1\} \in \mathfrak{Q}$, i.e. if there exists an alternating cyclic chain of length 4. Lemma 4.1 completes the proof. \square

PROPOSITION 4.2. If $\omega = (M, \mathfrak{M})$ is bicoloured by $\{\mathfrak{P}, \mathfrak{Q}\}$, such that $\gamma = (M, \mathfrak{P})$ is nested with the bipartition $\{P,Q\}$, < is a P-relation on M and $v = (N, \mathfrak{N})$ is a chain in ω , then v is alternating if and only if the monotone arrangement of N to a sequence (i_1, \dots, i_r) with $i_1 < \dots < i_r$ has the property

(4.2)
$$\mathfrak{N} = \{\{i_{\nu}, i_{\nu+1}\}: \nu = 1, \dots, r-1\}.$$

PROOF. We arrange N to a sequence (j_1, \dots, j_r) with $\mathfrak{N} = \{\{j_v, j_{v+1}\}: v = 1, \dots, r-1\}$ and $j_1 < j_r$. This arrangement is uniquely determined and Definition 1.3 gives us immediately $j_1 < \dots < j_r$ if and only if v is alternating.

In general, a chain is uniquely determined by its edgeset, but not by its pointset. However from Proposition 4.2 we obtain directly

Corollary 4.1. When ω is nested coloured and $v_i=(N_i,\mathfrak{N}_i)$, i=1,2 are alternating chains with $N_1=N_2$, then $v_1=v_2$.

Proof. From (4.2) we have $\mathfrak{N}_1 = \mathfrak{N}_2$. \square

DEFINITION 4.1. A subsequence

$$\delta = (d_{i_1}, \dots, d_{i_r})$$

of $d = (d_1, \dots, d_m) \in \mathbb{D}_m$ is alternating if and only if

$$d_{i_v} + d_{i_{v+1}} = 1$$
 for $v = 1, \dots r - 1$.

COROLLARY 4.2. δ is alternating if and only if $\{i_1, \dots, i_r\}$ is the pointset of an alternating chain of $\omega(d)$.

PROOF. The condition $d_{i_v} + d_{i_{v+1}} = 1$ is equivalent to: $i_v \in P$ iff $i_{v+1} \in Q$.

5. Counting alternating chains

We now prepare a formula which counts the number of alternating chains in $\omega(d)$: When m is a positive integer, then

(5.1)
$$v = (n_1, \dots, n_t): n_t \text{ positive integers, } n_1 + \dots + n_t = m$$

is a partition of m.

DEFINITION 5.1. The partition v(d) of d, $d \in \mathbb{D}_m$, is defined by

(5.2)
$$v(d) = (n_1(d), \cdots n_t(d)),$$

where the $n_p(d)$ are defined inductively as follows:

$$n_1(d)$$
: = # { $i\varepsilon\{1, 2, \dots m\}$: $d_i = d_{i-1} = \dots = d_1$ }.

When p > 1, $n_1 + \cdots + n_{p-1} < m$ then

$$n_p(d)\colon =\ \#\left\{i\varepsilon\{1,2,\cdots,m\}\colon\, d_i=\,d_{i-1}\,=\,\cdots\,=\,d_{n_{p-1}+1}\right\}.$$

The following proposition is plain:

PROPOSITION 5.1. For every $d \in \mathbb{D}_m$ the partition v(d) of d is a partition of m. When d, $d^* \in \mathbb{D}_m$, then $v(d) = v(d^*)$ if and only if $d = d^*$ or d = d'. Conversely every partition v of m defines exactly two binary numbers d, $d^* \in \mathbb{D}_m$ with $v(d) = v(d^*)$ and here $d^* = d'$.

When $\{\mathfrak{P},\mathfrak{Q}\}$ is a nested bicolouring of the bipartite complete graph $\omega=(M,\mathfrak{M})$ then the nested subgraphs $\gamma=(M,\mathfrak{N})$ and $\gamma^c=(M,\mathfrak{Q})$ of ω define the same partition of M in blocks. We call these blocks the blocks of ω with respect to the nested bicolouring $\{\mathfrak{P},\mathfrak{Q}\}$. Now, when ω is finite and m=#M, we have a binary number $d\in\mathbb{D}_m$ such that ω and $\omega(d)$ are isomorphic coloured. From Definition 5.1 we obtain

LEMMA 5.1. Suppose (N_1, \dots, N_t) are the blocks of $\omega(d)$ and $N_1 < \dots < N_t$. Then $\# N_i = n_i(d)$. DEFINITION 5.2. Suppose $d \in \mathbb{D}_m$ and

(5.3)
$$\eta = (h_1, \dots, h_r), \ 1 \le h_1 < \dots < h_r \le m.$$

When $\xi = (g_1, \dots, g_s)$, $1 \le g_1 < \dots < g_s \le m$, then η , ξ are d-equivalent, iff s = r and h, g_i are in the same block of $\omega(d)$ for $i = 1, \dots, r$.

So, when $h_i \leq g_i$, then the d-equivalence requires $d_{h_i} = d_{h_i+1} = \cdots = d_{g_i}$.

LEMMA 5.2. To $d \in \mathbb{D}_m$ let

$$(5.4) (N_1, \dots, N_t), N_1 < \dots < N_t$$

be the increasing sequence of blocks of $\omega(d)$. Furthermore for (5.3) assume $h_i \in N_{f(h_i)}$ for $i = 1, \dots, r$. Then the cardinality of sequences ξ , which are d-equivalent to η is $n_{f(h_i)} \cdot \dots \cdot n_{f(h_r)}$.

PROOF. To
$$h_i$$
 we may choose g_i arbitrarily in $N_{f(h_i)}$.

LEMMA 5.3. The set $\{h_1, \dots, h_r\}$ of elements of η in (5.3) is the pointset of an alternating chain of $\omega(d)$ if and only if $f(h_i) + f(h_{i+1}) \equiv 1(2)$ for $i = 1, \dots, r-1$.

PROOF. The condition is equivalent to $d_{h_i} + d_{h_{i+1}} = 1$ for $i = 1, \dots, s-1$. The lemma follows now from Definition 4.1. \square

This leads us to the following notation

(5.5)
$$\mathfrak{A}_{r\,t} := \{ I = \{ i_1, \dots, i_r \} \subset \{ 1, 2, \dots, t) \colon i_1 < \dots < i_r, i_v + i_{v+1} \equiv 1(2)$$
for $v = 1, \dots, r-1 \}$.

PROPOSITION 5.2. When $d \in \mathbb{D}_m$ has the sequence of blocks (5.4) and $n_i = \#N_i$ and when $a_r(d)$ is the cardinality of all alternating subsequences of d with r digits, then

$$a_r(d) = \sum_{I \in \mathfrak{U}_{r,t}} \prod_{i \in I} n$$

Proof. Apply Lemma 5.2 and Lemma 5.3.

(5.6) suggest to investigate the following polynomial:

DEFINITION 5.3.

$$A_r(x_1, \dots, x_t) = \sum_{I \in \mathfrak{N}_{r,t}} \prod_{i \in I} x_i$$

is the alternating polynomial.

Define
$$\begin{cases} b_{r,t} : = \# \{ I \in \mathfrak{U}_{r,t} : \min I \equiv 1(2) \} \\ c_{r,t} : = \# \{ I \in \mathfrak{U}_{r,t} : \min I \equiv 0(2) \}. \end{cases}$$

LEMMA 5.4. When t > 0, then

$$(5.9) c_{r\,t} = b_{r,t-1}.$$

PROOF. The mapping $i \to i-1$ for $i=2,\dots,t$ maps $\{I \in \mathfrak{A}_{r,t} : \min I \equiv 0(2)\}$ one-to-one onto $\{I^* \in \mathfrak{A}_{r,t-1} : \min I^* \equiv 1(2)\}$. \square

LEMMA 5.5. When $t \ge r + 2$ and r > 1, then

$$(5.10) b_{r,t} = b_{r,t-2} + b_{r-1,t-1}.$$

PROOF. $\{I \in \mathfrak{A}_{r,t} \colon \min I \equiv 1(2)\} = \{I \in \mathfrak{A}_{r,t} \colon \min I \equiv 1(2), \min I \geq 3\}$ $\cup \{I \in \mathfrak{A}_{r,t} \colon \min I = 1\}$.

The mapping $i \to i-2$ for $i=3,\cdots,t$ maps the set $\{I \in \mathfrak{A}_{r,t} : 3 \le \min I = 1(2)\}$ one-to-one onto $\{I^* \in \mathfrak{A}_{r,t-2} : \min I = 1(2)\}$ and the mapping $I \to \{i-1 : i \in I, i \ne 1\}$ maps $\{I \in \mathfrak{A}_{r,t} : \min I = 1\}$ one-to-one onto $\{I \in \mathfrak{A}_{r-1,t-1} : \min I = 1(2)\}$.

LEMMA 5.6. For $1 \le r \le t$ we have

(5.11)
$$b_{r,t} = {t - \left[\frac{1}{2}(t-r+1)\right] \choose r}.$$

PROOF. When r = t or r = t - 1, then clearly $\#\{I \in \mathfrak{A}_{r,t} : \min I \equiv 1(2)\} = 1$ and the right side of (5.11) gives us the same value. When r = 1, then

$$\#\{I \in \mathfrak{A}_{1,t} : \min I \equiv 1(2)\} = \#\{1,3,\cdots,2 \cdot \left[\frac{t+1}{2}\right] - 1\} = \left(\frac{t+1}{2}\right) \text{ and again the}$$

right side of (5.11). When $2 \le r \le t - 2$, we apply (5.10). Then we obtain by induction

$$\begin{aligned} b_{r,t} &= b_{r,t-2} + b_{r-1,t-1} = \binom{t-2 - \left[\frac{1}{2}(t-r-1)\right]}{r} + \binom{t-1 - \left[\frac{1}{2}(t-r+1)\right]}{r-1} \\ &= \binom{t - \left[\frac{1}{2}(t-r+1)\right]}{r} \,. \quad \Box \end{aligned}$$

COROLLARY 5.1.

(5.12)
$$\# \mathfrak{A}_{r,t} = \binom{t - \left[\frac{1}{2}(t-r+1)\right]}{r} + \binom{t - \left[\frac{1}{2}(t-r+2)\right]}{r}.$$

PROOF. Lemma 5.4 and Lemma 5.6.

COROLLARY 5.2.

$$(5.13) A_r\left(\frac{1}{t},\cdots,\frac{1}{t}\right) = \frac{1}{t^t}\left[\binom{t-\left[\frac{1}{2}(t-r+1)\right]}{r} + \binom{t-\left[\frac{1}{2}(t-r+2)\right]}{r}\right].$$

PROOF.
$$A_r\left(\frac{1}{t},\dots,\frac{1}{t}\right) = \sum_{I \in \mathfrak{A}_{r,t}} \prod_{i \in I} \frac{1}{t} = \frac{1}{t_r} \# \mathfrak{A}_{r,t}.$$

When $d^* = (1, 0, 1, \dots) \in \mathbb{D}_t$ is the binary number with t-digits, with the first digit 1 which is itself an alternating sequence, then (5.12) gives us the number of alternating subsequences of r-digits of d^* . Now define

$$(5.14) \alpha_{rm} = \max\{a_r(d): d \in \mathbb{D}_m\}.$$

We cannot prove in general the following conjecture

$$(5.15) \alpha_{r,t} = a_r(d^*) \text{for } t = 1, 2, \dots, r = 1, 2, \dots, t.$$

When

(5.16)
$$S = \{(x_1, \dots, x_t) \in \mathbb{R}^t : x_i \ge 0, \quad \sum x_i \ge 1\}$$

then the following conjecture implies (5.15)

(5.17)
$$\max\{A_r(x_1,\dots,x_t): (x_1,\dots,x_t) \in S\} = A_r(1/t,\dots,1/t).$$

When r = t, then (5.17) reduces to the arithmetic-geometric mean inequality. The number in (5.12) is the supposed upper bound in the so called "Upper Bound Conjecture" of convex polytopes [1]. (After this paper was sent for publication, this longstanding conjecture was proved [3]). In fact the connections between finite nested coloured bipartite complete graphs and the combinatorial structure of a certain class of convex polytopes were the starting point of this investigation.

REFERENCES

- 1. B. Grünbaum, Convex Polytopes, Interscience, p. 182 (1967).
- 2. F. Hering, Ueber die kombinatorische Struktur von Polyedern, (to appear).
- 3. P. McMullen, The maximum number of faces of a convex polytope, (preprint).

University of Washington, Seattle, Washington